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Abstract

We study a generalization of the Schramm–Loewner evolution loop measure to
pairs of non-intersecting Jordan curves on the Riemann sphere. We introduce four
equivalent definitions of two-loop Loewner potential for smooth pairs: respectively
expressing it in terms of normalized Brownian loop measure, zeta-regularized determi-
nants of the Laplacian, an integral formula generalizing universal Liouville action, and
Loewner–Kufarev energy of a foliation. Moreover, we prove that the potential is an
Onsager–Machlup functional for the two-loop SLE, and a variational formula involving
Schwarzian derivatives. The first, third and fourth definitions are finite if and only if
both loops are Weil–Petersson quasicircles.

Addressing the question of minimization of the two-loop Loewner potential, we
find that any such minimizers must be pairs of circles. However, the potential is not
bounded, diverging to negative infinity as the circles move away from each other and to
positive infinity as the circles merge, thus preventing a definition of two-loop Loewner
energy for the prospective large deviations principle for the two-loop SLE.

To remedy the divergence, we study a way of generalizing the two-loop Loewner
potential by taking into account how conformal field theory (CFT) partition functions
depend on the modulus of the annulus between the loops. This generalization is
motivated by the correspondence between SLE and CFT, and it also emerges from the
geometry of the real determinant line bundle as introduced by Kontsevich and Suhov.
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1 Introduction

1.1 Main results about two-loop Loewner potentials

Much of the conformal geometry of a simple loop γ in the Riemann sphere Ĉ may be
described by a Möbius-invariant, real-valued function I Ĉ(γ) introduced by Takhtajan and
Teo [TT06] under the name “universal Liouville action” as a Kähler potential for the
Weil–Petersson metric on universal Teichmüller space, and by Rohde and Wang [RW19,
Wan19] as “Loewner energy” in the context of Schramm–Loewner evolution (SLE) loop
measures. Subsequently, this function has appeared in various settings [Bis20, Joh22,
BP23, BBPW23, JV23, SW24, MP24, VW24, MW24]. Following an expression in terms
of zeta-regularized determinants of Laplacians for smooth γ in any conformal metric g,
see [Wan19, PW23] and Appendix A, the Loewner potential HĈ(γ) is a function such that
I Ĉ(γ) is obtained by normalization,

I Ĉ(γ) = 12
(
HĈ(γ) − inf

η
HĈ(η)

)
, HĈ(γ) = log

detζ ∆g|Ĉ
detζ ∆g|D1

detζ ∆g|D2

, (1.1)

where D1 and D2 are the domains in the complement of γ and the infimum taken over all
simple smooth loops is realized by the loop η being a circle.

In this paper, we consider two non-intersecting simple smooth loops γ1, γ2 in Ĉ, see
Figure 1.1. We introduce four formulas for the Loewner potential HĈ,2(γ1, γ2) of the pair
of loops and prove their equivalence.

1. The initial definition in Section 2 combines the one-loop Loewner potential of each
individual loop with an interaction term,

HĈ,2(γ1, γ2) = HĈ(γ1) + HĈ(γ2) + Λ∗(γ1, γ2). (1.2)

The interaction through the normalized Brownian loop measure Λ∗, see [LW04, FL13]
and Appendix A.1, is motivated by the construction of a two-loop SLE measure and
the fact that, by Theorem 2.2, this two-loop Loewner potential is an Onsager–Machlup
functional for said SLE measure, analogous to the main result in [CW23] for one loop.

2. In Section 3.1, we prove the formulation in terms of zeta-regularized determinants of
Laplacians (see Appendix A.2) as it is suggested in [PW23],

HĈ,2(γ1, γ2) = log
detζ ∆g|Ĉ

detζ ∆g|D1
detζ ∆g|Adetζ ∆g|D2

+ log 2 − log 4π, (1.3)

where the setup is as in Figure 1.1.
3. In Section 3.2, we find a generalization of the universal Liouville action [TT06], involv-

ing the pre-Schwarzians A[f ] = f ′′/f ′ of conformal maps uniformizing the complement
of the pair of loops as in Figure 1.1. Theorem 3.3 states that
HĈ,2(γ1, γ2) = HĈ,2(e−2πτS1, S1)

+ 1
12π

( ∫∫
e−2πτD

∣∣A[f1]
∣∣2 |dz|2 +

∫∫
Aτ

∣∣A[fA]
∣∣2 |dz|2 +

∫∫
D∗

∣∣A[f2]
∣∣2 |dz|2

)

− 1
3 log

∣∣∣∣f ′
2(∞)
f ′

1(0)

∣∣∣∣ .
(1.4)
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Figure 1.1: In this work, we study the conformal geometry of two non-intersecting simple
smooth loops γ1, γ2 in the Riemann sphere Ĉ. By conformal invariance, let the disk D1
enclosed by γ1 contain 0 and let the disk D2 enclosed by γ2 contain ∞. A is the annulus
between γ1 and γ2, and we denote the modulus of A by τ , and the uniformizing map
from the standard annulus Aτ =

{
z ∈ C

∣∣ e−2πτ < |z| < 1
}

to A by fA. Also, f1 is the
Riemann mapping from e−2πτD to D1 such that f1(0) = 0 and f ′

1(0) > 0 and f2 is the
Riemann mapping from D∗ = Ĉ \ D to D2 such that f2(∞) = ∞ and f ′

2(∞) > 0, where
D = {z ∈ C | |z| < 1} is the unit disk.

4. In Section 3.3, we find a relation to the Loewner–Kufarev energy of a measure ρ,
denoted S(ρ) as defined in [APW20, VW24]. The measure is obtained through the
Loewner–Kufarev equation of the foliation of C \ {0} by equipotential loops as ob-
tained from the uniformizing maps in Figures 1.1 and 3.2. We prove the following
generalization of the results in [VW24] for the one-loop Loewner energy,

HĈ,2(γ1, γ2) = HĈ,2(e−2πτS1, S1) + 4
3S(ρ) − 1

6 log
∣∣∣∣f ′

2(∞)
f ′

1(0)

∣∣∣∣ . (1.5)

On the subject of a natural regularity class for the loops, we find that HĈ,2(γ1, γ2),
as defined by Equation (1.2), is finite if and only if both γ1 and γ2 are Weil–Petersson
quasicircles. This follows from the fact that, since the universal Liouville action of a single
loop is finite if and only if it is a Weil–Petersson quasicircle [TT06], the same holds true
for the one-loop Loewner potential and, moreover, the Brownian loop measure is finite for
any two disjoint non-polar sets [FL13]. Moreover, by [VW24, Theorem 1.1], finiteness of
the formulas (1.4) and (1.5) implies that the loops are Weil–Petersson quasicircles. Let us
mention that Weil–Petersson quasicircles have recently attracted a great deal of attention
for its various equivalent descriptions and its important role in geometric function theory
and conformal field theory [RSS17, She18, Bis20, SS23].

Next, in Section 4, we address the question whether minimizers of the two-loop Loewner
potential exist. On the one hand, this is relevant for the definition of a notion of a two-loop
Loewner energy by subtracting the infimum as in Equation (1.1) for the one-loop Loewner
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Figure 1.2: Plot of the two-loop Loewner potential of a pair of circles separated by an
annulus with modulus τ , normalized by the value at τ = 1. Note the divergences as
τ ! ∞, q ! 1, moving the circles apart, and as τ ! 0, q ! 0, merging the circles.

potential. Generally, notions of Loewner energy are expected to provide rate functions for
the large deviations principle of SLE [Wan22, PW23, Gus23, AHP24]. On the other hand,
the task of finding the minimizers pertains to the question in conformal geometry of how
to canonically embed various configurations of curves and graphs [BE21, MRW22, PW23,
Zha24]. We employ a two-step strategy to identify the infimum of HĈ,2(γ1, γ2).

1. We prove a variational formula for the two-loop Loewner potential, similar to that in
[TT06, SW24] in the case of a single loop — see Proposition 4.1. The formula allows
for deformations of the loops by infinitesimal Beltrami differentials ν with support in
D1 ∪D2, hence preserving the modulus of A,

∂

∂ε

∣∣∣∣
ε=0

HĈ,2(ωεν(γ1), ωεν(γ2)) = − 1
3π Re

(∫∫
D1
ν S[f−1

1 ] |dz|2 +
∫∫

D2
ν S[f−1

2 ] |dz|2
)
.

(1.6)
Note how the Schwarzian derivatives S[f−1

1 ] and S[f−1
2 ] vanish if and only if the

uniformizing maps f1 and f2 as depicted in Figure 1.1 are Möbius transformations.
Thus, if a minimizer exists, both loops must be circles.

2. By conformal invariance, a configuration consisting of two circles is characterized by
the modulus τ of the annulus bounded by the circles. Using the formulas for the zeta-
regularized determinant of the Laplacian on a disk or annulus found in [Wei87], we
explicitly compute HĈ,2(e−2πτS1, S1). However, we find that the two-loop Loewner
potential diverges to −∞ as two circles move further apart in the limit τ ! ∞.
Moreover, it diverges to +∞ as the circles merge in the limit τ ! 0. See also the plot
in Figure 1.2.

As a final point, in Section 5, we provide a remedy to the problem of non-existence
of minimizers for the two-loop potential described above. As we will explain below, the
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solution is motivated by the role that SLE measures play as the universal laws of interfaces
in conformal field theory. For now, let us just give a precise mathematical description of
the procedure. After fixing a constant c ̸= 0, we will pick positive real numbers Zg(D) > 0
indexed by D being either Ĉ, or any simply connected domain, or any doubly-connected
domain in Ĉ, and subsequently by g being any conformal metric on D. Assume that
the family Zg(D) satisfies the following properties under conformal transformations and
diffeomorphisms,

Ze2σg(D) = ec S0
L(σ,g)Zg(D), Zf∗g(f(D)) = Zg(D),

S0
L(σ, g) = 1

12π

∫∫
Σ

(1
2 |∇gσ|2g +Rgσ

)
dVg + 1

12π

∫
∂Σ
kgσ dℓg,

(1.7)

where σ : D ! R is any smooth function and f : D ! Ĉ is a diffeomorphism onto its
image. ∇g, Rg, and kg are respectively the divergence, Gaussian curvature, and boundary
curvature with respect to the metric g. We define a generalized notion of two-loop Loewner
potential by

HZ
Ĉ,2(γ1, γ2) = 2

c log Zg(D1)Zg(A)Zg(D2)
Zg(Ĉ)

. (1.8)

As explained in Section 5.1, and as already observed in [MP24] for a single loop, we
recover the probabilistic two-loop Loewner potential HZ

Ĉ,2(γ1, γ2) = HĈ,2(γ1, γ2) + (const.)
in Equation (1.3) up to a constant by setting

Zg(D) =
(

detζ ∆g|D
Bg(D)

)−c/2

, Bg(D) = exp
( 1

4π

∫
∂D

kgdℓg
)
. (1.9)

Generally, by the uniformization theorem, any family Zg(D) is completely determined by
the values of

Zg(Ĉ), Zdzdz̄(D), Zdzdz̄(Aτ ), τ > 0, (1.10)

where g belongs to the conformal class of Ĉ, and dzdz̄ = dx2 + dy2 is the flat metric.
In particular, an analogous generalization of the one-loop Loewner potential can only be
changed by a finite constant with respect to Equation (1.1). Assuming that Zdzdz̄(Aτ ) is
a smooth function of τ , we conclude with Proposition 5.2, which relates the existence of a
minimizing disjoint pair of circles to the question whether the function

e− π
3 cτZdzdz̄(Aτ ) (1.11)

has a global minimum in τ ∈ (0,∞).
Finally, we would like to highlight two technical contributions in this work. Namely,

Corollary 3.2 is a novel renormalization formula for zeta-regularized determinants of Lapla-
cians analogous to normalized Brownian loop measure. Secondly, the inequality in Sec-
tion 3.3, Proposition 3.4 generalizes a corollary of the Grunsky inequality to multiple
nested domains. Here, it is a preliminary to obtain Equation (1.5).

1.2 Motivation of the CFT definition of Loewner potentials

In the following, we motivate the generalized definitions (1.8) of two-loop Loewner poten-
tials HZ

Ĉ,2(γ1, γ2) from the point of view of (Euclidean) 2D conformal field theory (CFT).
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For mathematical introductions to the latter, see for instance [Gaw99, Sch08, GKR24]. In
the CFT terminology, the constant c ̸= 0 is called the central charge and the numbers
Zg(D) > 0 are the partition functions of any fixed CFT of central charge c in the domains
D with respect to the metrics g.

Generally speaking, one may think of the loops γ1, γ2 as interfaces arising in con-
figurations of a fixed CFT and the Loewner potential as an action functional for such
interfaces. Let us explain this heuristically using a statistical mechanical system on a
finite discretization of Ĉ with states σ, a local energy function S(σ), and inverse temper-
ature β. For example, consider the critical Ising model where states take values +1, −1
and S considers a nearest neighbor interaction. The partition function is given by

Z(Ĉ) =
∑
σ

e−βS(σ). (1.12)

When considering the partition function Z(D) on a subdomain D ⊂ Ĉ such as D1, A, D2
in Figure 1.1, we have to fix boundary conditions on the restricted state σ|D, say +1 or −1
in the Ising model, such that γ1 and γ2 are interfaces for any states with these boundary
conditions. The problem of fixing the boundary condition in conformally invariant ways is
the starting point of Cardy’s work on boundary conformal field theory [Car89a, Car89b,
Car08] which we briefly come back to in Example 5.4. With the setup above, the probability
of γ1, γ2 appearing as interfaces becomes

∑
σ such that

γ1, γ2 are interfaces

e−βS(σ)

Z(Ĉ)
=

∑
σ|D1 , σ|A, σ|D2

satisfying
boundary conditions

e−β
(
S(σ|D1 )+S(σ|A)+S(σ|D2 )

)
Z(Ĉ)

= Z(D1)Z(A)Z(D2)
Z(Ĉ)

. (1.13)

Letting the Loewner potential define a measure on pairs of loops with density e
c
2 HZ

Ĉ,2
(γ1,γ2)

leads to the definition of two-loop Loewner potential in Equation (1.8). Note that this
argument may be generalized to arbitrary configurations of loops, leading to the notions
of Loewner potential defined in Appendix B.

Returning to mathematics, Theorem 2.2 stating that the probabilistic two-loop Loewner
potential (1.3) is an Onsager–Machlup functional for the two-loop SLE measures defined
in Section 2 essentially confirms that the Loewner potential is what we called the “density”
of a measure on pairs of loops, where this measure is said two-loop SLEκ measure with

c = (6 − κ)(3κ− 8)
2κ , κ ∈ (0, 4]. (1.14)

In probability theory, SLE as originally defined by Schramm [Sch00] in the chordal
case has been generalized to loops in the Riemann sphere and general Riemann surfaces
[Wer07, KS07, BD16, KW16, Zha21, ACSW24]. Axiomatic characterizations of chordal
SLE [Sch00, LSW03] and recently also of loop SLE [KS07, BJ24, GQW24] support the
appearance of SLE as interfaces in CFT as conjectured in [BB02, FK04, KS07]. Theorems
about SLE as interfaces have been proven in several special cases of scaling limits of critical
lattice models (for instance, see [CDHKS14]). Multiple SLE has been studied extensively
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in the chordal case, see [Law09, PW23, PW19] and the references therein, and [BBK05] for
the relation to CFT. We would also like to point out the recent interest in chordal SLE in
multiply-connected domains [Law11, AB24, ABK24] and other works involving SLE loops
in multiply-connected domains [KK17, ARS22]. In the recent work [BJ24], multiple loop
SLE is interpreted as the amplitude of a CFT-like theory associated to SLE.

Let us provide slightly more details towards the construction in Section 2. Assuming
κ ∈ (0, 4], we show that by starting with the product of two independent one-loop SLE
measures µc

Ĉ as defined in [Zha21], a two-loop SLE measure

µc
Ĉ,2(dγ1, dγ2) = 1{γ1∩γ2=∅}e

c
2 Λ∗(γ1,γ2)µc

Ĉ(dγ1) ⊗ µc
Ĉ(dγ2) (1.15)

is uniquely determined by conformal invariance and a cascade relation, which allows consec-
utive sampling of the two loops (see Theorem 2.1). This definition involves the normalized
Brownian loop measure Λ∗, see [LW04, FL13] and Appendix A.1.

However, the above is by far not the only way to obtain a two-loop SLE measure. It
would be interesting to relate the following constructions to Equation (1.15).

1. For κ ∈ (8/3, 4], the one-loop measure µc
Ĉ may also be defined from the counting mea-

sure over a conformal loop ensemble (CLE), see [KW16, AS21, ACSW24]. In the same
way, a two-loop SLE measure may be obtained by sampling two loops independently
from the counting measure on CLE.

2. Consider a single SLE loop γ with κ ∈ (4, 8) in Ĉ \ {0,∞}. By the duality principle
of SLE, [ACSW24, BJ24], the inner and outer boundaries of γ surrounding 0 and ∞
forms a pair of disjoint SLE16/κ loops, giving another two-loop SLE measure.

Even though we have the universality result [BJ24, Theorem 1.9] of SLE loop measure
in the sense of Malliavin–Kontsevich–Suhov [Mal99, KS07], different instances of SLE loop
measures with the same κ might still be related by nontrivial Radon–Nikodym derivatives.
Since the complement of a single loop consists of simply connected domains, the Radon–
Nikodym derivative in this case is merely a constant. However, when considering a two-loop
measure, it may depend on the modulus τ of the annulus bounded by the pair of loops. In
Section 5 and Appendix B, we recall how these Radon–Nikodym derivatives and also the
partition functions Zg( · ) may be encoded as trivializations of the real determinant line
bundle [KS07, BD16, MP24]. From this abstraction, the Equation (1.8) for the two-loop
Loewner potential emerges quite naturally.

To conclude, this brings us to the conceptual insight of this work, clarifying the extent
of universality of SLE random curves appearing as the law of interfaces in CFT. Namely,
whenever interfaces separating a domain into multiply connected subdomains are studied,
the conjectured law of the interface differs from the established probabilistic definition of
SLE by a Radon-Nikodym derivative involving the partition functions that the CFT under
consideration associates to the respective subdomains. These partition functions, in turn,
are functions of the modular parameters of the domains.
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2 Two-loop SLE

2.1 Definition

The two-loop SLEκ measure µc
Ĉ,2 should be absolutely continuous with respect to the

product of two one-loop SLEκ loop measures,

µc
Ĉ,2(dγ1, dγ2) = 1{γ1∩γ2=∅}e

c
2 V(γ1,γ2)µc

Ĉ(dγ1) ⊗ µc
Ĉ(dγ2), (2.1)

where V is a measurable interaction term. Besides the conformal invariance and finiteness
properties also satisfied by the one-loop measure (see Appendix A.2), we expect a two-loop
measure to satisfy the cascade relation

µc
Ĉ,2(dγ1, dγ2) = µc

Ĉ(dγ1) ⊗
∑

D∈π0(Ĉ\γ1)

µc
D(dγ2). (2.2)

In words, this means that the two-loop measure is the product of the one-loop measure in
Ĉ and a second loop which is sampled in the complement of the first loop. We obtain the
following result, where only consider simple loops, hence κ ∈ (0, 4].

Theorem 2.1. The two-loop SLEκ measure for κ ∈ (0, 4] on Ĉ defined by

µc
Ĉ,2(dγ1, dγ2) = 1{γ1∩γ2=∅}e

c
2 Λ∗(γ1,γ2)µc

Ĉ(dγ1) ⊗ µc
Ĉ(dγ2) (2.3)

is the unique conformally invariant measure on pairs of non-intersecting loops in Ĉ, which
is absolutely continuous with respect to the product measure of two single SLEκ loop mea-
sures and satisfies the cascade relation (2.2).

Proof. Conformal invariance is a direct consequence of the conformal invariance of one-
loop measure µc

Ĉ and the normalized Brownian loop measure in Λ∗( · , · ), see respectively
[Zha21, FL13]. By the restriction covariance property of the one-loop measure [Zha21], see
also Equation (A.11) in Appendix A.1, the cascade relation (2.2) determines the two-loop

1Views and opinions expressed are however those of the authors only and do not necessarily reflect those
of the European Union or the European Research Council Executive Agency. Neither the European Union
nor the granting authority can be held responsible for them.
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measure uniquely, since

µc
Ĉ,2(dγ1, dγ2) = µc

Ĉ(dγ1) ⊗
∑

D∈π0(Ĉ\γ1)

1{γ2⊂D}e
c
2 V(γ1,γ2)µc

Ĉ(dγ2)

= µc
Ĉ(dγ1) ⊗

∑
D∈π0(Ĉ\γ1)

1{γ2⊂D}e
c
2

(
V(γ1,γ2)−Λ∗(γ2,Ĉ\D)

)
µc
D(dγ2)

(2.4)

implies that (2.2) holds precisely if

V(γ1, γ2) = Λ∗(γ1, γ2). (2.5)

2.2 Onsager–Machlup functional

The interpretation of Λ∗(γ1, γ2) as the interaction energy of a pair of loops leads to the
conformally invariant notion of Loewner potential2 of a pair of loops in Equation (1.2),

HĈ,2(γ1, γ2) = HĈ(γ1) + HĈ(γ2) + Λ∗(γ1, γ2). (2.6)

Following the one-loop case presented in [CW23], we show that HĈ,2 is an Onsager–
Machlup functional for the two-loop measure.

Let γ be a loop with analytic parametrization fγ : S1 ! γ. By analyticity, fγ extends
to an annulus UR = {z ∈ C |R < |z| < 1/R} for some 0 < R < 1. Define the following
family over R < ε < 1 of neighborhoods of loops close to γ,

Oε(γ) = {fγ(η) | η non-contractible loop in Uε} . (2.7)

In particular, we have

Oε(S1) = {non-contractible loops in Uε}. (2.8)

Theorem 2.2 (Onsager–Machlup functional of two-loop SLEκ). For two pairs of non-
intersecting analytic loops (γ1, γ2) and (ξ1, ξ2) in Ĉ, and families of neighborhoods Oε( · )
of loops as in Equation (2.7), we have

lim
ε!1

µc
Ĉ,2(Oε(γ1) × Oε(γ2))
µc
Ĉ,2(Oε(ξ1) × Oε(ξ2)) = e

c
2

(
HĈ,2(γ1,γ2)−HĈ,2(ξ1,ξ2)

)
. (2.9)

Proof. Let R be close enough to 1 such that the neighborhoods of loops near γ1 and γ2
exist and become disjoint in the sense that η1 ∩η2 = ∅ for all η1 ∈ OR(γ1) and η2 ∈ OR(γ2).
Then for R < ε < 1,

µc
Ĉ,2(Oε(γ1) × Oε(γ2))

=
∫

Oε(γ1)

∫
Oε(γ2)

e
c
2 Λ∗(η1,η2)µc

Ĉ(dη2) ⊗ µc
Ĉ(dη1)

2See Equation (1.1) for the relation of Loewner potential and energy.
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=
∫

Oε(γ1)

∫
Oε(γ2)

e

c
2

(
Λ∗(η1,η2)

−Λ∗(η1,Ĉ\fγ1 (UR))−Λ∗(η2,Ĉ\fγ1 (UR))
)
µc
fγ1 (UR)(dη2) ⊗ µc

fγ2 (UR)(dη1)

=
∫

Oε(S1)

∫
Oε(S1)

e

c
2

(
Λ∗(fγ1 (η1),fγ2 (η2))

−Λ∗(fγ1 (η1),Ĉ\fγ1 (UR))−Λ∗(fγ2 (η2),Ĉ\fγ1 (UR))
)
µc
UR

(dη2) ⊗ µc
UR

(dη1)

=
∫

Oε(S1)

∫
Oε(S1)

e

c
2

(
Λ∗(fγ1 (η1),fγ2 (η2))

+Λ∗(η1,Ĉ\UR)−Λ∗(fγ1 (η1),Ĉ\fγ1 (UR))

+Λ∗(η2,Ĉ\UR)−Λ∗(fγ2 (η2),Ĉ\fγ1 (UR))
)
µc
Ĉ(dη2) ⊗ µc

Ĉ(dη1).

By Corollary 2.4, Lemma 3.2 and Equation (1.6) in [CW23], we have for j = 1, 2,

lim
ε!1

sup
ηj∈Oε(S1)

(
Λ∗(ηj , Ĉ \ UR

)
− Λ∗(fγj (ηj), Ĉ \ fγj (UR)

))
= 1

12 I Ĉ(γj),

lim
ε!1

inf
ηj∈Oε(S1)

(
Λ∗(ηj , Ĉ \ UR

)
− Λ∗(fγj (ηj), Ĉ \ fγj (UR)

))
= 1

12 I Ĉ(γj).
(2.10)

Since the analogous statements hold true for the other pair (ξ1, ξ2) as well, we obtain the
following limit

lim
ε!1

µc
Ĉ,2(Oε(γ1) × Oε(γ2))
µc
Ĉ,2(Oε(ξ1) × Oε(ξ2)) = e

c
2 (Λ∗(γ1,γ2)−Λ∗(ξ1,ξ2)+ 1

12 (I Ĉ(γ1)+I Ĉ(γ2)−I Ĉ(ξ1)−I Ĉ(ξ2)))

= e
c
2 (Λ∗(γ1,γ2)−Λ∗(ξ1,ξ2)+HĈ(γ1)+HĈ(γ2)−HĈ(ξ1)−HĈ(ξ2))

= e
c
2

(
HĈ,2(γ1,γ2)−HĈ,2(ξ1,ξ2)

)
.

(2.11)

3 Characterizations of the two-loop Loewner potential

In this section, we give three more formulas for the two-loop Loewner potential, which is
initially defined using renormalized Brownian loop measure in Equation (2.6).

3.1 Zeta-regularized determinants of Laplacians

The two-loop Loewner potential as defined in (1.2) may be expressed in terms of zeta-
regularized determinants of Laplacians. Up to a constant, this is in agreement with the
more general definition suggested in [PW23, Equation (1.15)]. Note that we normalize
the determinant on Ĉ by the volume, which creates the − log 4π in the theorem; see also
Equation (A.4).

Theorem 3.1. Let g be any conformal metric on Ĉ and γ1, γ2 any two non-intersecting
simple smooth loops. With the setup as in Figure 1.1, we have

HĈ,2(γ1, γ2) = HĈ(γ1) + HĈ(γ2) + Λ∗(γ1, γ2)

= log
detζ ∆g|Ĉ

detζ ∆g|D1
detζ ∆g|Adetζ ∆g|D2

+ log 2 − log 4π.

11



Proof. The one-loop Loewner potential and the right-hand side of the theorem are con-
formally invariant by the Polyakov-Alvarez anomaly formula (A.3) and the Brownian
loop measure is also conformally invariant. Therefore, we will work in the round met-
ric g = e2σdzdz̄ with σ(z) = 1

2 log 4
(1+|z|2)2 = log 2 − log

(
1 + r2) in the coordinate z = reiθ.

The conformal change of the zeta-regularized determinant of the Laplacian of a disk QD,
Q > 0 from the flat metric dzdz̄ to the round metric e2σdzdz̄ is

PA(σ, dzdz̄|QD) = −1
6

∫ Q

0

4r2

(1 + r2)2 rdr − 1
3

(
log 2 − log

(
1 +Q2

)
− 3Q2

1 +Q2

)
= −1

3

( 1
1 +Q2 − 1

)
− 1

3 log 2 + Q2

1 +Q2

=
Q2 − 1

3
1 +Q2 + 1

3(1 − log 2)

(3.1)

Note that this expression has the property that

PA(σ, dzdz̄|QD)+PA(σ,dzdz̄| 1
Q

D) =
Q2 − 1

3
1 +Q2 +

1 − 1
3Q

2

1 +Q2 + 2
3(1−log 2) = 2

3(2−log 2), (3.2)

which is a constant independent of Q.
Using Möbius invariance, without loss of generality, assume that 0 ∈ D1 and ∞ ∈ D2.

Consider the difference of the left and right-hand sides of the theorem without the constant.
By the expression (1.1) for the one-loop potential and the definition (A.2) of the normalized
Brownian loop measure, this difference is

lim
R!∞

(
log

detζ ∆g|Ĉdetζ ∆g|A
detζ ∆g|D1∪A

detζ ∆g|A∪D2

+ ΛRD(γ1, γ2) − log logR
)

(3.3)

The claim that implies the theorem is that (3.3) converges to the constant term. Using
the relation between zeta-regularized determinants of Laplacians and masses of Brownian
loop measure with bounded quadratic variation in [APPS22], see also Theorem A.1 in
Appendix A.2, we find that (3.3) equals

lim
R!∞

(
−
∣∣∣µloop

Ĉ,R

∣∣∣+ ∣∣∣µloop
RD,R

∣∣∣+ ∣∣∣µloop
A∪D2,R

∣∣∣− ∣∣∣µloop
(A∪D2)∩RD,R

∣∣∣
− log volg(Ĉ) + logR+ γEM − log logR

)
,

(3.4)

where — except for the logarithmic volume of Ĉ — the volumes, boundary lengths, and
Euler characteristics have been cancelled. This combination of Brownian loop measure
masses may also be formulated as

lim
R!∞

(
− µloop

Ĉ,R

({
η : S1 ! Ĉ

∣∣∣ η ∩RS1 ̸= ∅, η ∩ γ1 ̸= ∅
})

− log volg(Ĉ) − logR− γEM − log logR
) (3.5)

Let Q > 1 be such that γ1 ⊂ QD∗ and γ1 ⊂ 1
Q D. Note that a loop intersecting RS1 and

γ1 also intersects QS1, and conversely, a loop intersecting RS1 and 1
Q S

1 also intersects

12



γ1. On the one hand, this yields the following lower bound for (3.5):

lim
R!∞

(
− µloop

Ĉ,R

({
η : S1 ! Ĉ

∣∣∣ η ∩RS1 ̸= ∅, η ∩QS1 ̸= ∅
})

− log volg(Ĉ) − logR− γEM − log logR
) (3.6)

In the estimate, we can revert the Brownian loop measure masses into determinants and
then apply the formulas (3.2), (A.6), (A.7) and (A.8). We use that QD∗ and 1

Q D are iso-
metric under the round metric g, and that PA(σ, dzdz̄|RD) − PA(σ, dzdz̄|{z∈C |Q≤|z|≤R}) =
PA(σ, dzdz̄|QD). Following these steps, the lower bound equals

lim
R!∞

(
log

detζ ∆g|Ĉdetζ ∆dzdz̄|{z∈C | Q≤|z|≤R}

detζ ∆dzdz̄|RDdetζ ∆dzdz̄| 1
Q

D

− 2
3(2 − log 2) − log logR

)

= lim
R!∞

(
− 2

3(2 − log 2) − log logR+ 1
2 − 4ζ ′

R(−1) − log 4π

− log π + 1
3(logQ− logR) + log(logR− logQ) + 2 log ϕ

(
(Q/R)2

)
+ 1

3 log 2 + log π + 1
3(logR− logQ) + 4ζ ′

R(−1) + 5
6

)
= log 2 − log 4π

(3.7)

On the other hand, we obtain an upper bound with Q replaced by 1
Q . Since the bounds

do not depend on Q, they turn out to be exact.

It might also be of interest to formulate the result entirely in terms of zeta-regularized
determinants of Laplacians or as a relation only between normalized Brownian loop mea-
sure and the determinants.

Corollary 3.2. Let g be any conformal metric on Ĉ and γ1, γ2 any two non-intersecting
simple smooth loops, such that, in the setup as in Figure 1.1, 0 ∈ D1 and ∞ ∈ D2. Then,

lim
R!∞

(
log

detζ ∆g|D1∪A
detζ ∆g|(A∪D2)∩R D

detζ ∆g|R Ddetζ ∆g|A
− log logR

)

= log
detζ ∆g|D1∪A

detζ ∆g|A∪D2

detζ ∆g|Ĉdetζ ∆g|A
+ log 2 − log 4π,

(3.8)

Λ∗(γ1, γ2) = log
detζ ∆g|D1∪A

detζ ∆g|A∪D2

detζ ∆g|Ĉdetζ ∆g|A
+ log 2 − log 4π. (3.9)

Proof. By Proposition 2.1 in [Dub09],

ΛRD(γ1, γ2) = log
detζ ∆g|D1∪A

detζ ∆g|(A∪D2)∩R D

detζ ∆g|R Ddetζ ∆g|A
. (3.10)

Then, both results follow because Equation (3.3) converges to log 2 − log 4π.
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3.2 Pre-Schwarzian formula for the Loewner potential

In this section, we prove that the two-loop Loewner potential (1.2) of smooth loops γ1, γ2
can be expanded around the energy of two circles with relative modulus τ equal to that
of the annulus A enclosed by γ1 and γ2 and a term which integrates the pre-Schwarzians
A[f ] = f ′′/f ′ of the conformal maps in Figure 1.1. This formula is analogous to an
expression of the one-loop Loewner potential found in [Wan19], relating it to the universal
Liouville action, which is a Kähler potential on universal Teichmüller space [TT06].

Theorem 3.3. For two non-intersecting simple smooth loops γ1, γ2 in Ĉ with the domains
and conformal maps set up as in Figure 1.1, the two-loop Loewner potential (1.2) equals

HĈ,2(γ1, γ2) = HĈ,2(e−2πτS1, S1)

+ 1
12π

( ∫∫
e−2πτD

∣∣A[f1]
∣∣2 |dz|2 +

∫∫
Aτ

∣∣A[fA]
∣∣2 |dz|2 +

∫∫
D∗

∣∣A[f2]
∣∣2 |dz|2

)

− 1
3 log

∣∣∣∣f ′
2(∞)
f ′

1(0)

∣∣∣∣ .
(3.11)

Proof. Fix a metric h = e2ψdzdz̄, where ψ has any smooth cut-off such that

ψ(z) =


1
2 log

(
4

(1+|z|2)2

)
near ∞

0 near A ∪D1 ∪ D.
(3.12)

This way, h is the flat metric on most of the sphere, with a round cap at ∞. Now we take
the pullback of h along the three conformal maps f1, fA, f2, finding

g1 = f∗
1 (h|D1) = e2(ψ◦f1+log |f ′

1|) dzdz̄|e−2πτD = e2 log |f ′
1| dzdz̄|e−2πτD, (3.13)

gA = f∗
A(h|A) = e2(ψ◦fA+log |f ′

A|)dzdz̄|Aτ = e2 log |f ′
A| dzdz̄|Aτ , (3.14)

g2 = f∗
2 (h|D2) = e2(ψ◦f2+log |f ′

2|) dzdz̄|D∗ = e2(ψ◦f2−ψ+log |f ′
2|) h|D∗ . (3.15)

The three metrics altogether form a metric on Ĉ that, however, may be discontinuous
across e−2πτS1 and S1. Using the expression for the Loewner potential in terms of zeta-
regularized determinants of the Laplacian from Theorem 3.1, we find by diffeomorphism
invariance of the determinants that,

HĈ,2(γ1, γ2) − HĈ,2(e−2πτS1, S1) = log
detζ ∆h|e−2πτ D

detζ ∆h|Aτ
detζ ∆h|D∗

detζ ∆h|D1
detζ ∆h|Adetζ ∆h|D2

= log
detζ ∆dzdz̄|e−2πτ D

detζ ∆dzdz̄|Aτ
detζ ∆h|D∗

detζ ∆g1|e−2πτ D
detζ ∆gA|Aτ

detζ ∆g2|D∗
.

(3.16)

Thus, we anticipate to obtain Equation (3.11) by the application of the Polyakov–Alvarez
anomaly formula (A.3) in Appendix A.2 to the conformal factor in Equations (3.13), (3.14),
and (3.15). The full expression is

HĈ,2(γ1, γ2) − HĈ,2(e−2πτS1, S1)
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= − PA
(

log |f ′
1|, dzdz̄|e2πτD

)
− PA

(
log |f ′

A|, dzdz̄|e2πτD
)

− PA
(

log |f ′
2|, h|e2πτD

)
= 1

6π

(∫∫
e−2πτD

1
2
∣∣∇ log |f ′

1|
∣∣2 |dz|2 +

∫∫
Aτ

1
2
∣∣∇ log |f ′

A|
∣∣2 |dz|2 (3.17)

+
∫∫

D∗

1
2
∣∣∇h(log |f ′

2| + ψ ◦ f2 − ψ)
∣∣2 dVh (3.18)

+
∫∫

D∗
Rh (log |f ′

2| + ψ ◦ f2 − ψ) dVh (3.19)

+
∫
e−2πτS1

(
e2πτ (log |f ′

1| − log |f ′
A|) + 3

2N(log |f ′
1| − log |f ′

A|)
)

dℓ (3.20)

+
∫
S1

(
(log |f ′

A| − log |f ′
2|) + 3

2N(log |f ′
A| − log |f ′

2|)
)

dℓ
)
. (3.21)

Generally, the pre-Schwarzians appear because for a holomorphic function f ,∣∣∇ log |f ′|
∣∣2 = |A[f ]|2 . (3.22)

For the first term (3.17) involving f1 and fA, this is immediate, since the underlying metric
is indeed the flat one. In the integrals over D∗, we have to deal with the non-flat metric h.
The Dirichlet energy in the term (3.18) is conformally invariant and the Gaussian curvature
in the term (3.19) is Rh = e−2ψ∆ψ and the volume form is dVh = e2ψ|dz|2. Since these
conformal factors cancel out, the terms (3.18) and (3.19) combine to

1
6π

∫∫
D∗

(1
2
∣∣∇(log |f ′

2| + ψ ◦ f2 − ψ)
∣∣2 + (∆ψ) (log |f ′

2| + ψ ◦ f2 − ψ)
)

|dz|2

= 1
6π

∫∫
D∗

(1
2
∣∣∇(log |f ′

2| + ψ ◦ f2 − ψ)
∣∣2 +

〈
∇ψ,∇(log |f ′

2| + ψ ◦ f2 − ψ)
〉)

|dz|2, (3.23)

where the boundary term in the application of Green’s first identity vanishes since ψ = 0
in a neighborhood of S1. By reparametrization and then by conformal invariance, we have∫∫

D∗

1
2
∣∣∇(ψ ◦ f2)

∣∣2 |dz|2 =
∫∫

D2

1
2
∣∣∇g2ψ

∣∣2
g2

dVg2 =
∫∫

D2

1
2
∣∣∇ψ∣∣2 |dz|2, (3.24)

and we can change the domain of integration back to D∗ since the support of ψ is contained
in D∗∩D2. Thus, by expanding the expression (3.23), we find that most of the terms cancel
out except for the term involving ⟨∇ log |f ′

2|,∇ψ⟩ (which vanishes by application of Green’s
first identity) and the term

(3.23) = 1
6π

∫∫
D∗

1
2
∣∣∇ log |f ′

2|
∣∣2 |dz|2 = 1

12π

∫∫
D∗

∣∣A[f ′
2]
∣∣2 |dz|2. (3.25)

For the terms (3.20) and (3.21) involving the normal derivative N , observe that it is
related to a conformal change e2σh of the geodesic curvature by kg = e−σ(kh +Nhσ) (see,
e.g. [Wan19, Appendix A]). Under the same conformal change, dℓg = eσdℓh. Finally, we
find reparametrizations of

∫
γ1
khdℓh which cancel each other out,∫

e−2πτS1
N(log |f ′

1| − log |f ′
A|)dℓ

=
∫
e−2πτS1

(
(elog |f ′

1|kg1 − kh) − (elog |f ′
A|kgA − kh)

)
dℓh

=
∫
e−2πτS1

kg1 e
log |f ′

1|dℓh −
∫
e−2πτS1

kgA elog |f ′
A|dℓh = 0,

(3.26)
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and analogously for the integral over S1.
By the mean-value property of harmonic functions, we have∫

e−2πτS1
e2πτ log |f ′

1| dℓ −
∫
S1

log |f ′
2| dℓ = −2π log

∣∣∣∣f ′
2(∞)
f ′

1(0)

∣∣∣∣ . (3.27)

Finally, the remaining boundary integrals involving log |f ′
A| = Re(log f ′

A) cancel out as the
real part of the contour integrals∫

S1

log f ′
A

i z dz −
∫
e−2πτS1

log f ′
A

i z dz = 0. (3.28)

3.3 Loewner–Kufarev energy

In this section, we find that the two-loop Loewner potential (1.2) of smooth loops γ1, γ2 is
related to the Loewner–Kufarev energy of a foliation obtained from the setup in Figure 1.1
by taking equipotential curves — pushforwards of the foliation by circles along the respec-
tive uniformizing maps; see also Figure 3.2. Our results are similar to those in [VW24]
for the one-loop Loewner energy. However, our setup requires a generalization of a special
case of the Grunsky inequality, which considers additional nested annuli between the two
original disjoint simply connected domains. Even though the proof is given only for the
case of a single annulus, it has a direct generalization to any finite number of annuli —
see Remark 3.5.

Consider the generalized Grunsky inequality in [Hum72] and also [Pom75, Theorem 4.1]
of a pair Riemann mappings f1 : D ! D1 and f2 : D∗ ! D2 such that f1(0) = 0,
f2(∞) = ∞, f ′

2(∞) = 1, and D1 ∩ D2 = ∅ and their Grunsky coefficients bk,l for k, l ∈ Z
defined by the two-variable expansion of difference quotients

log f2(z) − f2(w)
z − w

= −
∞∑
k=1

∞∑
l=1

bk,lz
−kw−l, z, w ∈ D∗, (3.29)

log f2(w) − f1(z)
w

= −
∞∑
k=0

∞∑
l=1

b−k,lz
kw−l, z ∈ D, w ∈ D∗, (3.30)

log f1(z) − f1(w)
z − w

= −
∞∑
k=0

∞∑
l=0

b−k,−lz
kwl, z, w ∈ D (3.31)

and bk,l = bl,k. For any constants λ−m, . . . , λm ∈ C, the inequality reads,

∑
k∈Z

|k|
∣∣∣∣ ∑

|l|≤m
bk,lλl

∣∣∣∣2 ≤
∑

0<|k|≤m

|λk|2

k
+ 2 Re

(
λ̄0

∑
|l|≤m

b0,lλl

)
, (3.32)

where equality holds if and only if Ĉ \ (D1 ∪D2) is of measure zero.
Our inequality proven below resembles the special case of (3.32) in [TT06, Chapter 2,

Remark 2.2] with just one nonzero constant λ0 = 1, that is, m = 0,

∑
k∈Z

|k| |bk,0|2 ≤ 2 Re b0,0 = 2 log
∣∣∣∣f ′

2(∞)
f ′

1(0)

∣∣∣∣, (3.33)
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By taking z = 0 in Equation (3.30) and w = 0in Equation (3.31) and direct computation,∫∫
D∗

∣∣∣∣f ′
2(z)
f2(z) − 1

z

∣∣∣∣2|dz|2 =
∫∫
D∗

∣∣∣∣( log f2(z)
z

)′∣∣∣∣2|dz|2 = π
∞∑
k=1

k|bk,0|2,

∫∫
D

∣∣∣∣f ′
1(z)
f1(z) − 1

z

∣∣∣∣2|dz|2 =
∫∫
D

∣∣∣∣( log f1(z)
z

)′∣∣∣∣2|dz|2 = π
∞∑
k=0

k|b−k,0|2.
(3.34)

The special case of (3.32) becomes∫∫
D

∣∣∣∣f ′
1(z)
f1(z) − 1

z

∣∣∣∣2|dz|2 +
∫∫
D

∣∣∣∣f ′
2(z)
f2(z) − 1

z

∣∣∣∣2|dz|2 ≤ 2π log
∣∣∣∣f ′

2(∞)
f ′

1(0)

∣∣∣∣. (3.35)

For the additional doubly-connected domains, replace f1 : D ! D1 by f1 : e2πτD ! D1,
τ > 0 and introduce a third univalent function fA : Aτ ! Ĉ\ (D1 ∪D2). The setup is as in
Figure 1.1 except that the complement of D1, D2, and A = fA(Aτ ) may not be of measure
zero — see Figure 3.1. The proof follows that of the generalized Grunsky inequality (3.32)
in [Pom75, Theorem 4.1] by adding additional contour integrals and series expansions.

Proposition 3.4. Consider univalent functions

f1 : e−2πτD ! D1, fA : Aτ ! A, f2 : D∗ ! D2, (3.36)

such that D1, A and D2 are disjoint and f1(0) = 0, f2(∞) = ∞. Then,∫∫
e−2πτD

∣∣∣∣f ′
1(z)
f1(z) − 1

z

∣∣∣∣2|dz|2 +
∫∫
Aτ

∣∣∣∣f ′
A(z)
fA(z) − 1

z

∣∣∣∣2|dz|2 +
∫∫
D

∣∣∣∣f ′
2(z)
f2(z) − 1

z

∣∣∣∣2|dz|2 ≤ 2π log
∣∣∣∣f ′

2(∞)
f ′

1(0)

∣∣∣∣.
(3.37)

Equality holds if and only if Ĉ \ (D1 ∪A ∪D2) is of measure zero.

Proof. The inequality will be obtained from the positivity of the Dirichlet energy of the
function log z integrated in the complement F = Ĉ \ (D1 ∪A ∪D2). We momentarily
enlarge F for some small ε > 0 to the interior of the curves, see Figure 3.1,

Cε1 = −f1
(
(e−2πτ − ε) S1)+ T+

1 + fA
(
(e−2πτ + ε) S1)− T−

1 ,

Cε2 = −fA
(
(1 − ε) S1)+ T+

2 + f2
(
(1 + ε) S1)− T−

2 ,
(3.38)

where the signs stand for the reversal of the conventional orientation of the curves and
T±

1 , T±
2 are the left and right limits of segments connecting f1(e−2πτ − ε) to fA(e−2πτ + ε)

and fA(1 − ε) to f2(1 + ε) respectively (the dotted lines in Figure 3.1).
By the analytic Green’s formula, see [Pom75, Theorem 2.2], we have

0 ≤
∫∫

F

|dz|2

|z|2
= lim

ε!0

1
2i

∫
Cε

1∪Cε
2

log z̄
z

dz. (3.39)

Note that the left-hand side is independent of the choice of branch cut for log z̄, thus we
can choose it such that it goes from 0 to ∞ along T±

1 and T±
2 and does not intersect the

curves elsewhere. The jump across the branch cut is 2πi , thus

1
2i

∫
T+

1 −T−
1 ∪T+

2 −T−
2

log z̄
z

dz = −π
∫
T+

1 ∪T+
2

dz
z

= π log fA(e−2πτ + ε)f2(1 + ε)
f1(e−2πτ − ε)fA(1 − ε) . (3.40)
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∞
...
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D1

D2

f1

fA

f2

Figure 3.1: The setup for our inequality involving additional doubly-connected domains,
Proposition 3.4. In contrast to Figure 1.1, the complement of D1 ∪ A ∪ D2 may not be
of measure 0. The dashed lines on the left are circles ε > 0 away from e−2πτS1 and S1

respectively. Their image — the dashed lines on the right — as well as the dotted lines,
are part of the integration contour in the proof, see Equation (3.38).

Consider the expansions

log f1(z)
z

= log f ′
1(0) −

∞∑
k=1

b−k,0z
k, z ∈ e−2πτD,

log fA(z)
z

= −
∑
k∈Z

βkz
k, z ∈ Aτ ,

log f2(z)
z

= log f ′
2(∞) −

∞∑
k=1

bk,0z
−k, z ∈ D∗.

(3.41)

On the one hand, similar to Equation (3.34), we have
∫∫

e−2πτD

∣∣∣∣f ′
1(z)
f1(z) − 1

z

∣∣∣∣2|dz|2 +
∫∫
Aτ

∣∣∣∣f ′
A(z)
fA(z) − 1

z

∣∣∣∣2|dz|2
∫∫
D∗

∣∣∣∣f ′
2(z)
f2(z) − 1

z

∣∣∣∣2|dz|2

= π
∞∑
k=1

k |b−k,0|2e−4πkτ + π
∑
k∈Z

k|βk|2(1 − e−4πkτ ) + π
∞∑
k=1

k |bk,0|2.
(3.42)

On the other hand, we evaluate the loops in the contour integral (3.38) as ε ! 0. First
compute,

log f1(z) (log f1(z))′dz
∣∣
z=e−2πτ ei t

= i
(
log f ′

1(0) − 2πτ −
∞∑
k=1

b̄−k,0e
−2πτe−i kt − i t

)(
1 −

∞∑
k=1

kb−k,0e
−2πkτei kt

)
dt

(3.43)

and likewise for fA and f2. After some computation, the respective integrals over loops in
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Equation (3.39) become

− 1
2i

∫
f1(e−2πτ S1)

log z̄
z

dz = −π
(
log f ′

1(0) +
∞∑
k=1

k|b−k,0|2e−4πkτ − 4πτ − 2i

− log f1(e−2πτ ) + log f ′
1(0)

)
1
2i

∫
fA(e−2πτ S1)

log z̄
z

dz = π
(∑
k∈Z

k|βk|2e−4πkτ − 4πτ − 2i − log fA(e−2πτ )
)

− 1
2i

∫
fA(S1)

log z̄
z

dz = −π
(∑
k∈Z

k|βk|2 − 2i − log fA(1)
)

1
2i

∫
f2(S1)

log z̄
z

dz = π
(
log f ′

2(∞) −
∞∑
k=1

k|bk,0|2 − 2i − log f2(1) + log f ′
2(∞)

)
.

(3.44)
The right-hand side of the inequality (3.39) equals the sum of Equations (3.44) and Equa-
tion (3.40) with ε = 0. Since several terms cancel out, we find

0 ≤ −π
∞∑
k=1

k|b−k,0|2e−4πkτ−π
∑
k∈Z

k|βk|2(1−e−4πkτ )−π
∞∑
k=1

k|bk,0|2+2π log
∣∣∣∣f ′

2(∞)
f ′

1(0)

∣∣∣∣, (3.45)

from which the result follows by comparing to Equation (3.42).
Moreover, equality holds if the Dirichlet energy (3.39) vanishes, which is the case if

and only if F is of measure zero.

Remark 3.5. Proposition 3.4 can be further generalized to the case of any finite number
of nested annuli replacing fA. The proof is analogous by introducing further contours.

We now turn to the relation of the two-loop Loewner potential (1.2) and the Loewner–
Kufarev energy of the foliation (ηt)t∈R defined by

ηt =


f2(e−2πtS1), t ≤ 0,
fA(e−2πtS1), 0 < t < τ,

f1(e−2πtS1), t ≥ τ,

(3.46)

where f1, fA, f2 are the uniformizing maps of the complement of a pair of non-intersecting
simple smooth loops γ1, γ2 like in Figure 1.1. This is the foliation by equipotential loops
depicted in Figure 3.2.

By the energy duality theorem [VW24, Theorem 1.2], the Loewner–Kufarev energy of
the specific foliation (ηt)t∈R may be defined as

S((ηt)t∈R) = 1
16π

∫∫
C

|∇φ(z)|2|dz|2, φ(z) =


arg z f ′

1(z)
f1(z) , z ∈ e−2πτD,

arg z f ′
A(z)

fA(z) , z ∈ Aτ ,
arg z f ′

2(z)
f2(z) , z ∈ D∗.

(3.47)

This the Dirichlet energy of the winding function φ defined above, where the argument is
defined as the continuous branch going to 0 as z ! ∞.
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Figure 3.2: The pushforward of the foliation of C \ {0} by concentric circles by the
conformal maps f1, fA, f2 as in Figure 1.1 which uniformize the complements of the
highlighted loops.

Theorem 3.6. For two non-intersecting simple smooth loops γ1, γ2 in Ĉ with the domains
and conformal maps set up as in Figure 1.1, the two-loop Loewner potential (1.2) equals

HĈ,2(γ1, γ2) = HĈ,2(e−2πτS1, S1) + 4
3S((ηt)t∈R) − 1

6 log
∣∣∣∣f ′

2(∞)
f ′

1(0)

∣∣∣∣ . (3.48)

with the winding function φ and Loewner–Kufarev energy S as in Equation (3.47).

Proof. For a generic holomorphic univalent function we have,∣∣∣∣∇ arg z f
′(z)

f(z)

∣∣∣∣2 =
∣∣∣∣A[f ] − f ′

f
+ 1
z

∣∣∣∣2 =
∣∣A[f ]

∣∣2 +
∣∣∣∣f ′

f
− 1
z

∣∣∣∣2 − 2 Re
(

A[f ]
(
f ′

f
− 1
z

))
. (3.49)

To find similar terms from the pre-Schwarzian in Theorem 3.3, we study the inverted
loops j(γ1) and j(γ2) where j(z) = 1

z . The domains complementary to the inverted pair
are uniformized by the functions

h1 = j ◦ f2 ◦ j ◦ (e2πτ · ) : e2πτD ! j(D2), (3.50)
hj(A) = j ◦ fA ◦ j ◦ (e2πτ · ) : Aτ ! j(A), (3.51)
h2 = j ◦ f1 ◦ j ◦ (e2πτ · ) : D∗ ! j(D1). (3.52)

Generically, the pre-Schwarzian of such a map h = j ◦ f ◦ j ◦ (e2πτ · ) is

∣∣A[h](z)
∣∣2 = e−4πτ

|z|4

∣∣∣∣2f ′( 1
e2πτ z

)
f
( 1
e2πτ z

) −
f ′′( 1

e2πτ z

)
f ′( 1

e2πτ z

) − 2e2πτz

∣∣∣∣2 =

e−4πτ

|z|4

(∣∣A[f ]( 1
e2πτ z

)
∣∣2 + 4

∣∣∣∣f ′( 1
e2πτ z

)
f( 1

e2πτ z
)

− e2πτz

∣∣∣∣2 − 4 Re
(

A[f ]( 1
e2πτ z

)
(
f ′( 1

e2πτ z
)

f( 1
e2πτ z

)
− e2πτz

)))
.

(3.53)
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Therefore, we have the following formula under the coordinate transformation w = 1
e2πτ z

,

∣∣A[h](w)
∣∣2|dw|2 =

(
− |A[f ](z)|2 + 2

∣∣∣∣f ′

f
− 1
z

∣∣∣∣2 + 2
∣∣∣∣∇ arg z f

′(z)
f(z)

∣∣∣∣2)|dz|2. (3.54)

A direct computation shows that

log
∣∣∣∣ h′

1(0)
h′

2(∞)

∣∣∣∣ = − log
∣∣∣∣f ′

2(∞)
f ′

1(0)

∣∣∣∣. (3.55)

Note how the pre-Schwarzians in Equation (3.54) cancel with those in Theorem 3.3 when
applied to the non-inverted loops. The other terms to the right of Equation (3.54) may be
rewritten by application of the inequality in Proposition 3.4, which is an equality here, and
the definition (3.47) of Loewner–Kufarev energy. By combining these findings, we obtain

HĈ,2(γ1, γ2) = 1
2

(
HĈ,2(γ1, γ2) + HĈ,2(j(γ2), j(γ2))

)
= HĈ,2(e−2πτS1, S1) + 4

3S((ηt)t∈R) − 1
6 log

∣∣∣∣f ′
2(∞)
f ′

1(0)

∣∣∣∣. (3.56)

4 Variation of the two-loop Loewner potential

4.1 Variations preserving the modulus

In this section, we employ the following variational formula of the one-loop Loewner poten-
tial [TT06, Wan19, SW24] to find variations of the two-loop Loewner potential preserving
the modulus of the annulus between the loops:

∂

∂ε

∣∣∣∣
ε=0

HĈ(ωεν(γ)) = − 1
3π Re

(∫∫
D1
ν S[f−1

1 ] |dz|2 +
∫∫

D2
ν S[f−1

2 ] |dz|2
)
. (4.1)

Here, D1 and D2 are the bounded and unbounded connected components of Ĉ \ γ and
f1 : D ! D1, f2 : D∗ ! D2 are Riemann mappings. The direction of the variation is
characterized by an infinitesimal Beltrami differential ν on Ĉ with support in D1 ∪ D2.
Also, ωεν : Ĉ ! Ĉ is a quasiconformal solution of the Beltrami equation associated to εν
for small ε ≥ 0. Since ωεν(z) is holomorphic where ν(z) = 0, we only consider analytical
deformations of γ in this setup.

To make use of Equation (4.1), we need a cascade relation for the two-loop Loewner
potential — analogous to Equation (2.2) for the SLEκ two-loop measure. The following is
a direct consequence of Theorem 3.1:

HĈ,2(γ1, γ2) = HĈ(γ1) + log
detζ ∆g|A∪D2

detζ ∆g|Adetζ ∆g|D2

+ (const.)

= HĈ(γ2) + log
detζ ∆g|D1∪A

detζ ∆g|D1
detζ ∆g|A

+ (const.),
(4.2)

where the geometric setup described in Figure 1.1 is used.
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Proposition 4.1. Let ν be an infinitesimal Beltrami differential with compact support in
the interior of D1 ∪D2 and let f1 : e−2πτD ! D1, f2 : D∗ ! D2 be any Riemann mappings.
Then,

∂

∂ε

∣∣∣∣
ε=0

HĈ,2(ωεν(γ1), ωεν(γ2)) = − 1
3π Re

(∫∫
D1
ν S[f−1

1 ] |dz|2 +
∫∫

D2
ν S[f−1

2 ] |dz|2
)
.

(4.3)
The variation is independent of the choice of Riemann mappings f1, f2.

Proof. We use linearity of the variation by decomposing the infinitesimal Beltrami differ-
ential as ν = ν1 + ν2, where νj has support in Dj , j = 1, 2.

By the cascade relation (4.2),

HĈ(ωεν1(γ1), ωεν1(γ2)) = HĈ(ωεν1(γ1)) + log
detζ ∆g|ωεν1 (A∪D2)

detζ ∆g|ωεν1 (A)
detζ ∆g|ωεν1 (D2)

+ (const.).

(4.4)
Note that ωεν1 is conformal on A ∪ D2. Moreover, the ratio of determinants in (4.4) is
conformally invariant. Thus, this term is independent of ε:

detζ ∆g|ωεν1 (A∪D2)

detζ ∆g|ωεν1 (A)
detζ ∆g|ωεν1 (D2)

=
detζ ∆(ωεν1 )∗g|A∪D2

detζ ∆(ωεν1 )∗g|Adetζ ∆(ωεν1 )∗g|D2

=
detζ ∆g|A∪D2

detζ ∆g|Adetζ ∆g|D2

.

(4.5)
From the variation (4.1) of the first term we find

∂

∂ε

∣∣∣∣
ε=0

HĈ(ωεν1(γ1), ωεν1(γ2)) = − 1
3π Re

∫∫
D1
ν1 S[f−1

1 ] |dz|2. (4.6)

The result (4.3) is obtained by combining the above with the analogous formula for ν2.

4.2 Variation of the modulus

The variational formula of Proposition 4.1 implies that at any critical point of HĈ,2(γ1, γ2)
it must hold that γ1 and γ2 are circles in Ĉ (such that f1 and f2 are Möbius transforma-
tions). By conformal invariance, such a configuration is determined by the modulus τ of
the annulus A between the circles γ1 and γ2. However, the variations in Proposition 4.1
preserve this modulus. By applying explicit formulas for the zeta-regularized determinant
of the Laplacian in the flat metric on a disk or on an annulus with circular boundary, we
obtain the following formula.

Proposition 4.2. Let γ1 and γ2 be disjoint circles in Ĉ and denote by τ > 0 the modulus
of the annulus enclosed by the circles. Then,

HĈ,2(γ1, γ2) = − log τ − 2 log ϕ(e−4πτ ) + (const.), (4.7)

where the constant is independent of τ and ϕ(x) =
∏∞
k=1(1−xk) is the Euler function (A.5).

Proof. By conformal invariance, without loss of generality, assume that γ1 = e−2πτ S1 and
γ2 = S1, such that the annulus between the curves becomes Aτ . Since the expression

22



for HĈ,2 in Theorem 3.1 is conformally invariant, we fix a metric g which is the flat
metric dzdz̄ on D and extends smoothly to Ĉ (this choice is independent of τ). Using the
expressions (A.6) and (A.7), we find that up to constants not depending on τ ,

HĈ,2(e−2πτ S1, S1) = log
detζ ∆g|Ĉ

detζ ∆dzdz̄|e−2πτ D
detζ ∆dzdz̄|Aτ

detζ ∆g|D∗

= − log detζ ∆dzdz̄|e−2πτ D
− log detζ ∆dzdz̄|Aτ

+ (const.)

= −2π
3 τ + 2π

3 τ − log(2πτ) − 2 log ϕ(e−4πτ ) + (const.)

= − log(τ) − 2 log ϕ(e−4πτ ) + (const.)

= − log τ − 2
∞∑
k=1

log
(
1 − e−4πkτ

)
+ (const.). (4.8)

Observe from Equation (4.8), that HĈ,2(e−2πτS1, S1) is a decreasing function of τ . The
τ ! 0 limit, in which the curves merge, is ∞ and the τ ! ∞ limit, pushing the curves
apart, is −∞. Thus, the infimum of the two-loop Loewner potential is

inf
(γ1,γ2)

HĈ,2(γ1, γ2) = −∞, (4.9)

and it is not attained. Therefore, it is not possible to define a two-loop Loewner energy by
subtracting the minimum from the Loewner potential in the same way as for the one-loop
Loewner potential and energy (see Equation (1.1)).

5 CFT partition functions and the two-loop Loewner poten-
tial

In this section, we discuss two results about the generalized notion of two-loop Loewner
potential HZ

Ĉ,2(γ1, γ2) introduced in equation (1.8). First, we show that the definition in
terms of zeta-regularized determinants of Laplacians in Equation (1.3) may be recovered
from the generalization. Since the definition of HZ

Ĉ,2(γ1, γ2) takes ideas from CFT, we
conceptually find the partition functions associated to the usual probabilistic definition of
one-loop SLE. Secondly, we show results analogous to those in Section 4 for the probabilistic
one-loop Loewner potential. This results in the condition for the existence of minimizers
of two-loop Loewner potential mentioned in Equation (1.11), see Proposition 5.2. This
section draws on the derivation of Equation (1.8) via the real determinant line bundle in
Appendix B.

5.1 The partition functions of loop SLE

Malliavin–Kontsevich–Suhov (MKS) loop measures, following the original description by
Kontsevich and Suhov [KS07], take values in a real determinant line bundle over the space
of loops. This means that an actual loop measure µc,Z

Ĉ
(taking values in R+) is obtained

by picking a trivialization Z of the line bundle. In fact, as explained in [MP24, Section 3.2]
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and in Appendix B, such a trivialization Z(γ, Ĉ) at a loop γ ⊂ Ĉ is identified in a canonical
way simply with a positive real number,

Z(γ, Ĉ) 7! e
c
2 HZ

Ĉ
(γ) ∈ R+. (5.1)

In this section, we explain why the function HZ
Ĉ(γ) of the loop γ is defined as the Loewner

potential with respect to Z in Definition B.3 in Appendix B.
Still following [KS07], in the comparison of trivializations Z1 and Z2, the measures

µc,Z1
Ĉ

and µc,Z2
Ĉ

are absolutely continuous with Radon-Nikodym derivative being the ratio
of the numbers (5.1),

dµc,Z2
Ĉ

dµc,Z1
Ĉ

(γ) = e
c
2

(
HZ2

Ĉ
(γ)−HZ1

Ĉ
(γ)
)
. (5.2)

Since the real determinant line bundle is a trivial line bundle, the choice of trivialization
is usually omitted when discussing SLEκ within the context of probability theory. In this
work, however, we are interested in the properties of two-loop Loewner potential HZ

Ĉ,2
considering various trivializations. Specifically, we discuss SLEκ within the context of
CFT, where the trivialization of the real determinant line bundle is given by the partition
functions of the CFT — as suggested by the notation Z.

Details on the relation between the real determinant line bundle over surfaces and
Loewner potentials are explained in Appendix B. We just mention here that the restriction
covariance property (A.11) generalizes to the loop measure relative to a trivialization Z.
Namely, for D ⊂ Ĉ we have

dµc,Z
D

dµc,Z
Ĉ

(γ) = 1{γ⊂D} e
c
2

(
HZ

D(γ)−HZ
Ĉ

(γ)
)
. (5.3)

We proceed to identify the trivialization of the real determinant line bundle associated
to the usual SLEκ loop measure µc

Ĉ. Comparing the restriction covariance formulas (A.11)
and (5.3), we find that for µc,Z

Ĉ
= µc

Ĉ and µc,Z
D = µc

D given a compact, simply connected
subset D ⊂ C that

HZ
D(γ) − HZ

Ĉ(γ) = Λ∗(γ, Ĉ \D) = Λ∗(γ, ∂D). (5.4)

By the second part of Corollary 3.2 with γ1 = γ and γ2 = ∂D, this holds for

− log 2 + log 4π + HZ
Ĉ(γ) = log

detζ ∆g|Ĉ
detζ ∆g|D1

detζ ∆g|A∪D2

= HĈ(γ),

HZ
D(γ) = log

detζ ∆g|D
detζ ∆g|D1

detζ ∆g|A
= HD(γ),

(5.5)

where the constant term may be chosen differently to match normalization. By (B.16), we
conclude that the trivialization commonly used for SLE is the one of Example B.2, Item 1,

Z(D) =
(

detζ ∆g|D
Bg(D)

)−c/2

[g] ∈ Detc
R(D). (5.6)

where D ⊆ Ĉ is any subdomain.
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5.2 Variation of CFT Loewner potentials

As explained in Appendix B, the real determinant line bundle over surfaces is defined over
the corresponding moduli spaces of Riemann surfaces. Since the moduli space containing
Ĉ or a simply connected subset D ⊂ Ĉ only contains a single equivalence class, any two
trivializations of Detc

R over these moduli spaces are related by a multiplicative constant.
In particular, any trivialization Z(D) = Zg(D)[g] ∈ Detc

R(D) over any closed simply
connected subset D ⊆ Ĉ is related to the trivialization (5.6) by a constant independent
of D,

logZg(D) = −c
2 log

detζ ∆g|D
Bg(D) + (const.). (5.7)

Since the Loewner potential of a single loop γ ⊂ Ĉ only involves Ĉ and the simply
connected domains D1 and D2, we find

HZ
Ĉ(γ) = HĈ(γ) + (const.), (5.8)

for a constant independent of γ. Therefore, the one-loop Loewner energy may be expressed
using any trivialization Z without depending on the choice:

I Ĉ(γ) = 12
(
HZ

Ĉ(γ) − inf
η

HZ
Ĉ(γ)

)
. (5.9)

This explains why in the study of MKS loop measures for a single loop in Ĉ, the possibility
of having different trivializations for the real determinant line bundle does not play a role.
In particular, the same variational formula (4.1) holds for any HZ

Ĉ .

For a two-loop configuration (γ1, γ2) on Ĉ, the relation (5.8) is more complex. The
reason is that the two loops divide Ĉ into two simply connected subsets D1 and D2 as well
as a doubly-connected annulus A. For the annulus, the analogue of Equation (5.7) is

logZg(A) = −c
2 log

detζ ∆g|A
Bg(A) + fZ(τ), (5.10)

for some function fZ(τ) ∈ R of the modulus τ of the annulus A. The function fZ(τ) may
be computed in the flat metric dzdz̄ on the standard annulus

{
z ∈ C

∣∣ e−2πτ ≤ |z| ≤ 1
}
,

fZ(τ) = logZdzdz̄(Aτ ) + c
2 log

detζ ∆dzdz̄|Aτ

Bg(Aτ )
. (5.11)

Comparing the two-loop Loewner potentials of the trivialization (5.6) and any other triv-
ialization Z, we find

HZ
Ĉ,2(γ1, γ2) = HĈ,2(γ1, γ2) + fZ(τ) + (const.). (5.12)

The appearance of a function of the modulus, means that the existence of the infimum of
HZ

Ĉ,2(γ1, γ2) and the geometry of the minimizers depend on the choice of trivialization Z.
Recall that the variations in Theorem 4.1 preserve the modulus τ . The following result

is a direct consequence of Equation (5.12).
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Corollary 5.1. Fix any trivialization Z of the real determinant line bundle. Let ν be an
infinitesimal Beltrami differential with compact support in the interior of D1 ∪D2 and let
fj : D ! Dj, j = 1, 2, be any Riemann mappings. Then,

∂

∂ε

∣∣∣∣
ε=0

HZ
Ĉ,2(ωεν(γ1), ωεν(γ2)) = − 1

3π Re
(∫∫

D1
ν S[f−1

1 ] |dz|2 +
∫∫

D2
ν S[f−1

2 ] |dz|2
)
.

(5.13)
The variation is independent of the choice of Riemann mappings f1, f2.

Hence, we conclude that, if generalized two-loop Loewner potentials HZ
Ĉ,2 attains an

infimum, it must also be a disjoint pair of circles. To minimize among pairs of circles, we
follow a strategy similar to Proposition 4.2, finding the following criterion.

Proposition 5.2. Fix any trivialization Z of the real determinant line bundle. There
exists a disjoint pair of circles attaining the infimum of the Loewner potential HZ

Ĉ,2 among
disjoint pairs of circles if and only if

e− π
3 cτZdzdz̄(Aτ ) (5.14)

has a global minimum in τ ∈ (0,∞). Here, τ is the modulus of the annulus between the
circles and Z( · ) = Zg( · )[g] is the trivialization with respect to a metric g.

We avoid the question of existence of a minimizer of HZ
Ĉ,2 over all smooth curves since

would have to generalize our variational formula, which only covers analytic deformations
of smooth loops. One would have to either extend the class of Beltrami differentials or,
more naturally, extend the definition of HZ

Ĉ,2 to quasicircles and work with the Hilbert
manifold structure on universal Teichmüller space, like in [TT06, Wan19] for one loop.

Proof. By conformal invariance, without loss of generality, assume that γ1 = e−2πτ S1 and
γ2 = S1. Fix a metric g which is the flat metric dzdz̄ on D and extends smoothly to Ĉ
(this choice is independent of τ). Using the conformal anomaly S0

L(−2πτ, dzdz̄) = −π
3 τ

from scaling e−2πτD to D, we find

logZdzdz̄(e−2πτD) = logZe−4πτ dzdz̄(D) = logZdzdz̄(D) − π

3 cτ. (5.15)

By Equation (1.8) we have

c
2HZ

Ĉ,2(γ1, γ2) = log Zdzdz̄(e−2πτD)Zdzdz̄(Aτ )Zg(D∗)
Zg(Ĉ)

= logZdzdz̄(Aτ ) − π

3 cτ + (const.).
(5.16)

Discarding the terms independent of τ , we find that (5.16) being minimal at τ is equivalent
to Equation (5.14) being minimal.

Example 5.3. In Section 4.2, it was shown that the two-loop Loewner potential (1.2)
associated to

Zdzdz̄(Aτ ) =
(

detζ ∆dzdz̄|Aτ

Bdzdz̄(Aτ )

)−c/2

(5.17)

diverges to −∞ as τ ! ∞.
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Figure 5.1: Plots of two instances of Equation (5.14), where the partition function is
the Verma module Virasoro character (5.20). Note that one of the functions has a global
minimum for q = e−π/τ ∈ (0, 1) while the other is minimal for q ! 1 which corresponds
to τ ! ∞, that is, the circles moving away from each other.

Example 5.4. By Example B.2, Item 2, Zdzdz̄(Aτ ) may be given by CFT partition func-
tions on annuli, which are studied in the work of Cardy on boundary conformal field theory
(BCFT) [Car89b, Car89a, Car08]. If the BCFT has a discrete spectrum S ⊂ R, it is argued
that the partition functions are of the general form3

Zdzdz̄(Aτ ) =
∑
h∈S

nhχc,h(q), q = e− π
τ . (5.18)

The coefficients nh ∈ Z>0 may depend on the choice of two conformally invariant boundary
conditions at the two boundary components of Aτ . The function χc,h(q) is the character of
the irreducible highest-weight representation of the Virasoro algebra with highest weight h,

χc,h(q) = q
c

24 Tr qL0 . (5.19)

For simplicity, we consider only the case of the character of a single Verma module of
weight h of the Virasoro algebra. In this case, the character is

χc,h(q) = qh− c
24

ϕ(q) = qh− c
24∏∞

k=1(1 − qk) , (5.20)

with the Euler function ϕ also appearing in Equation (A.5). Note that the representations
may not be irreducible for certain values of c and h (which are called minimal models).
Figure 5.1 compares plots of Equation (5.14) for two values of c and h demonstrating

3Cardy uses a periodic strip instead of an annulus. The conformal mapping between these is of the form
z 7! ei Cz where C is a constant depending on τ . These conformal maps give constant conformal factors.
By the Gauss–Bonnet theorem, the conformal anomaly of such conformal transformations with respect
to a flat metric vanishes (since the Euler characteristic of an annulus is 0). Thus, the annulus partition
functions agree.
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the possibility of existence and non-existence of the minimizer of the two-loop Loewner
potential. We leave the detailed study and interpretation of the existence of the minimum
in the context of BCFT as a possible direction for future work.

A Background

A.1 Brownian loop measure

The Brownian loop measure µloop
Ĉ

is an infinite measure on the set of continuous loops in
Ĉ [LW04]. On subdomains D ⊂ Ĉ, the Brownian loop measure is defined by restriction
µloop
D = µloop

Ĉ
1γ⊂D, making it restriction invariant. It is also conformally invariant, mean-

ing that for conformally equivalent subdomains D1 and D2 of Ĉ, the pushforward of the
measure on D1 onto loops in D2 is exactly the measure in D2. In this work, we are mostly
concerned with the following quantity

ΛD(V1, V2) = µloop
D

({
γ : S1 ! D

∣∣∣ γ ∩ V1 ̸= ∅, γ ∩ V2 ̸= ∅
})

, (A.1)

which is finite for subdomains D with non-polar boundary and compact disjoint non-polar
subsets V1, V2 ⊂ D.

For D = Ĉ however, ΛD(V1, V2) is infinite due to the infinite mass of increasingly large
loops. By removing a small disk (e.g. at infinity) and shrinking it to a point, ΛĈ(V1, V2)
may be renormalized in the following way [FL13],

Λ∗(V1, V2) = lim
R!∞

(
ΛRD(V1, V2) − log logR

)
< ∞. (A.2)

The renormalization may be thought of as the removal of a small disk RD∗ at infinity, hence
limiting the size of the loops. In fact, the same limit is obtained by removing small disks
at other points, implying that the limit remains invariant under Möbius transformations.

A.2 Zeta-regularized determinants of Laplacians

In this section, we provide results on zeta-regularized determinants of Laplacians associated
to compact Riemann surfaces with or without boundary Σ and conformal metrics g on Σ,
which appear in this work.

Since Σ is compact, the positive Laplacian or Laplace–Beltrami operator ∆g with
Dirichlet boundary condition has a discrete spectrum. We first consider the case where
∂Σ ̸= ∅. In that case, the zeta-regularized determinant detζ ∆g is defined by analytic
continuation of the associated spectral zeta function [RS71]. Most notably, we are inter-
ested in the change of detζ ∆g under conformal transformations replacing g by e2σg for
σ ∈ C∞(Σ,R). The change is given by the Polyakov–Alvarez anomaly formula [Pol81,
Alv83, OPS88],

detζ ∆e2σg

detζ ∆g
= ePA(σ,g),

PA(σ, g) = − 1
6π

∫∫
Σ

(1
2 |∇gσ|2g +Rgσ

)
dVg − 1

6π

∫
∂Σ

(
kgσ + 3

2Ngσ

)
dℓg,

(A.3)
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where ∇g, Rg, kg, and Ng are respectively the divergence, Gaussian curvature, boundary
curvature and normal derivative with respect to the metric g.

A zeta-regularized determinant of the Laplacian may also be defined for conformal met-
rics on compact Riemann surfaces without boundary. However, due to lack of a boundary
condition, the associated Laplacian has a zero eigenvalue associated to the constant func-
tions. The definition of the zeta-regularized determinant excludes the zero eigenvalue and
is denoted det′

ζ ∆g(Σ). It also satisfies an anomaly formula, which comes with an addi-
tional term involving the volumes volg(Σ) and vole2σg(Σ) before and after the conformal
transformation [Pol81]. To reconcile this, we define

detζ ∆g :=
det′

ζ ∆g

volg(Σ) . (A.4)

This definition turns Equation (A.3) into a unified Polyakov-Alvarez anomaly formula for
surfaces with or without boundary.

In the case of a disk or an annulus and the flat metric g = dzdz̄, the explicit expressions
for the zeta-regularized determinant of the Laplacian listed below were found in [Wei87].
The expressions involve the standard Riemannn zeta function ζR(s), defined by analytic
continuation of ζR(s) =

∑
k≥1 k

−s, and the Euler function defined by

ϕ(x) =
∞∏
k=1

(1 − xk). (A.5)

For the flat metric on a disk rD of radius r > 0, we have

log detζ ∆|dz|2|rD = −1
6 log 2 − 1

2 log π − 1
3 log r − 2ζ ′

R(−1) − 5
12 . (A.6)

Also in the flat metric, on an annulus A = {z ∈ C | r1 ≤ |z| ≤ r2} for r2 > r1 > 0, we have

log detζ ∆|dz|2|A = − log π + 1
3(log r1 − log r2) + log(log r2 − log r1) + 2 log ϕ

(
(r1/r2)2

)
.

(A.7)
Following [OPS88], in the round metric g = 4

(1+|z|2)2 dzdz̄ of area 4π on the Riemann
sphere, we have

log detζ ∆g|Ĉ = 1
2 − 4ζ ′

R(−1) − log 4π. (A.8)

The Brownian loop measure may also be defined on Σ, where it is invariant under
conformal transformations of g; see [APPS22] for details. For C > 0, denote by µloop

Σ,C the
Brownian loop measure restricted to those loops which have quadratic variation between
4/C and 4C in a fixed metric g and denote by |µloop

Σ,C | the (finite) total mass of this measure.
In Section 3.1, we use the following relation between these masses and zeta-regularized
determinants of Laplacians as shown in [APPS22, Theorem 1.3].

Theorem A.1. For ∂Σ ̸= ∅, log detζ ∆g|Σ equals

lim
C!∞

(
volg(Σ)

4π C −
∫
∂Σ dℓg
4
√
π

√
C + χ(Σ)

6
(

logC − γEM
)

−
∣∣∣µloop

Σ,C

∣∣∣) (A.9)
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and for ∂Σ = ∅, log detζ ∆g|Σ equals

lim
C!∞

(
volg(Σ)

4π C − log volg(Σ) + χ(Σ)
6
(

logC − γEM
)

+ logC + γEM −
∣∣∣µloop

Σ,C

∣∣∣) (A.10)

Here, χ(Σ) is the Euler characteristic of Σ and γEM is the Euler–Mascheroni constant.

For κ ∈ [0, 4), one-loop Schramm–Loewner evolution in a Riemann surface (with
boundary) Σ is a measure on the space of simple loops in Σ, which is the set of sub-
sets γ ⊂ Σ homeomorphic to S1, equipped with the Hausdorff metric with respect to a
conformal Riemannian metric on Σ. See [Zha21] for a detailed construction, at least in
the case of the Riemann sphere Σ = Ĉ and for subdomains Σ = D ⊂ Ĉ. In fact, the loop
measure on subdomains D ⊂ Ĉ is defined from the loop measure on Ĉ by the restriction
covariance property,

dµc
D

dµc
Ĉ

(γ) = 1γ⊂De
c
2 Λ∗(γ,Ĉ\D). (A.11)

The one-loop SLE measure on Ĉ has recently been shown to be the unique nontrivial and
locally finite measure on loops in Ĉ satisfying conformal invariance of the restricted
measures µc

D [BJ24] (up to a scalar). Namely, local conformal invariance means that for
any conformally equivalent subdomains D1 and D2 of Ĉ, the pushforward of µc

D1
onto

loops in D2 is exactly µc
D2

.
The Loewner potential for the one-loop measure is

HĈ(γ) = log
detζ ∆g|Ĉ

detζ ∆g|D1
detζ ∆g|D2

, (A.12)

where D1 and D2 are the connected components of Ĉ \ γ and g is any conformal metric
on Ĉ. The potential is independent of the metric by (A.3) in Appendix A.2.

The relation to the Loewner energy of a single loop is given by subtraction of the
infimum of the potential,

I Ĉ(γ) = 12
(
HĈ(γ) − inf

η
HĈ(η)

)
. (A.13)

See [PW23] for more details on the distinction between Loewner potential and energy. In
[CW23], it is shown that I Ĉ is an Onsager–Machlup functional for µc

Ĉ. We reformulate
this theorem in terms of the potential.

Theorem A.2. For simple analytic loops γ and ξ in Ĉ, we have

lim
ε!0

µc
Ĉ(Oε(γ))
µc
Ĉ

(Oε(ξ))
= e

c
2 (HĈ(γ)−HĈ(ξ)), (A.14)

where Oε( · ) is the ε-neighborhood of a loop as defined in Equation (2.7).
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B The real determinant line bundle and Loewner potentials

In this appendix, we briefly introduce the real determinant line bundle and highlight the
relation to Loewner energy as found in [MP24, Theorem 3.8]. The generalization of this
relation leads to a notion of Loewner potential for configurations of loops on Riemann sur-
faces. To show that it is compatible with the definition of the two-loop Loewner potential
on the Riemann sphere in Section 2, we examine a particular choice of trivialization of
the real determinant line bundle based on the zeta-regularized determinant of the Lapla-
cian. Other trivializations can be obtained, for example, from CFT partition functions.
These yield additional definitions of the Loewner potential, which are discussed further in
Section 5.

The real determinant line of a compact Riemann surface Σ (with boundary) is a real
half-line of equivalence classes

Detc
R+(Σ) = {λ[g] | λ ∈ R+, g conformal metric on Σ} , (B.1)

under the relation

λ[e2σg] = λec S0
L(σ,g)[g], (B.2)

S0
L(σ, g) = 1

12π

∫∫
Σ

(1
2 |∇gσ|2g +Rgσ

)
dVg + 1

12π

∫
∂Σ
kgσ dℓg. (B.3)

The constant c ∈ R is called the central charge of the real determinant line and S0
L(σ, g)

is the conformal anomaly of the conformal change of the metric g to e2σg by a function
σ ∈ C∞(Σ,R).

If f : Σ1 ! Σ2 is an isomorphism of Riemann surfaces, then the real determinant lines
are isomorphic by pushing forward the metric, λ[g] 7! λec S0

L(log |f ′|)[f∗g]. The factor makes
the pushforward invariant under automorphisms. Therefore, the real determinant lines
form R+-bundles Detc

R+(Mg,b) over the moduli spaces Mg,b of compact Riemann surfaces
of genus g with b boundary components. The moduli spaces consist of equivalence classes
[Σ] ∈ Mg,b of Riemann surfaces of the respective type up to isomorphism.

The smooth structure of the real determinant line bundles is determined by the choice
of a (globally defined) trivialization Z. Since the choice of Z is essential to the following
discussion of generalized Loewner potentials, we emphasize the definition and give a few
examples below.

Definition B.1. A trivialization of the real determinant line bundle is a section

Z : Mg,b ! Detc
R+(Mg,b). (B.4)

Given any Riemann surface Σ such that [Σ] ∈ Mg,b and any conformal metric g on Σ,
there exists Zg(Σ) > 0 such that

Z([Σ]) = Zg(Σ)[g] ∈ Detc
R+(Σ). (B.5)

The relevant trivializations for this work are the following.
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Example B.2.
1. Zeta-regularized determinants: The Polyakov–Alvarez anomaly formula (A.3) and

the conformal anomaly (B.3) are related by a boundary term

S0
L(σ, g) + 1

2 PA(σ, g) = − 1
8π

∫
∂Σ
Ngσdℓg. (B.6)

To obtain a trivialization of Detc
R, we introduce the functional

Bg(Σ) = e
1

4π

∫
∂Σ kgdℓg ,

Be2σg(Σ)
Bg(Σ) = e

1
4π

∫
∂Σ Ngσdℓg , (B.7)

with precisely this covariance. Therefore, the following elements of Detc
R+ are inde-

pendent of the choice of conformal metric on Σ,

Zc
ζ (Σ) =

(
detζ ∆g

Bg(Σ)

)−c/2

[g] ∈ Detc
R+(Σ). (B.8)

As explained in Section 5.1, this is the trivialization that is often implicitly used in
the probabilistic study of SLE.

2. CFT partition functions: Given a (boundary) conformal field theory of central
charge c, which comes with partition functions Zg(Σ), define

Z(Σ) = Zg(Σ)[g] ∈ Detc
R+(Σ). (B.9)

This element is independent of the choice of conformal metric g by the Weyl covariance
property of the partition functions [Gaw99, GKR24].

3. Constant curvature metrics: For example, let g0(Σ) be the unique metric with
constant curvature +1, −1, or 0, such that the geodesic curvature of the boundary
component vanishes [OPS88]. Then, a trivialization is defined by

Z(Σ) = [g0(Σ)]. (B.10)

The construction that leads to generalized Loewner potentials involves the sewing iso-
morphisms Sγ⃗ on real determinant lines inspired by the work of Segal [Seg04]. These are
multilinear maps on the determinant lines associated to the connected components of Σ
minus non-intersecting smooth loops γ⃗ = (γ1, . . . , γN ) in Σ,

SΣ,γ⃗ :
⊗

A∈π0(Σ\γ⃗)
Detc

R+(A) ! Detc
R+(Σ)

⊗
A∈π0(Σ\γ⃗)

λA[g|A] 7!
( ∏
A∈π0(Σ\γ⃗)

λA
)
[g].

(B.11)

This sewing isomorphism works by picking a conformal metric g on Σ and expressing
elements of the determinant lines of the connected components A relative to the restricted
metrics g|A. By the locality of the conformal anomaly (B.3), this definition is independent
of the choice of g, see also [MP24, Section 3.1].
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Furthermore, the real determinant line of N non-intersecting smooth loops γ⃗ in Σ is
defined as the determinant line of the full surface tensored with the duals the determinant
lines associated to the connected components of Σ \ γ⃗,

Detc
R+(Σ, γ⃗) = Detc

R+(Σ) ⊗
⊗

A∈π0(Σ\γ⃗)

(
Detc

R+(A)
)∨
. (B.12)

Applying the sewing isomorphisms (B.11) to the determinant line of γ⃗ as 1⊗(SΣ,γ)∨, we
obtain elements Detc

R+(Σ) ⊗ Detc
R+(Σ)∨. The evaluation of the first component in the

dual, denoted by ev, yields a positive real number. We denote the composition of these
operations by

evΣ,γ⃗ = ev ◦ Sγ⃗ : Detc
R+(γ⃗,Σ) ! R+. (B.13)

It is the logarithm of these numbers that define the generalized Loewner potential.

Definition B.3. The Loewner potential of non-intersecting loops γ⃗ = (γ1, . . . , γN ) in
Σ with respect to a trivialization Z of Detc

R+ is

c
2HZ

Σ(γ⃗) = log evΣ,γ⃗
(
Z(Σ) ⊗

⊗
A∈π0(Σ\γ⃗)

Z(A)∨
)
. (B.14)

Concretely, for c ̸= 0 and Z(Σ) = Zg(Σ)[g] we have

c
2HZ

Σ(γ⃗) = logZg(Σ) −
∑

A∈π0(Σ\γ⃗)
logZg(A). (B.15)

In particular, for c ̸= 0, the Loewner potential of a single loop γ separating Ĉ into D1
and D2 is

HZ
Ĉ(γ) = 2

c log Zg(D1)Zg(D2)
Zg(Ĉ)

. (B.16)

For two loops γ1 and γ2 bounding disks D1 and D2 and an annulus A, we recover Equa-
tion (1.8).
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[BD16] Stéphane Benoist and Julien Dubédat. “An SLE2 loop measure”. In: An-
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